Models covered in this manual

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1007 (6767)</td>
<td>0.5 GPH (1.9 LPH)</td>
</tr>
</tbody>
</table>

MANUAL NUMBER LT919X1 (7006767))

<table>
<thead>
<tr>
<th>REV</th>
<th>ECR/ECN</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>8/31/10</td>
<td>Transfer to Marietta (was LT919X1 3/11/09)</td>
<td>ccs</td>
</tr>
</tbody>
</table>
Important Read this instruction manual. Failure to read, understand and follow the instructions in this manual may result in damage to the unit, injury to operating personnel, and poor equipment performance.

Caution All internal adjustments and maintenance must be performed by qualified service personnel.

Material in this manual is for information purposes only. The contents and the product it describes are subject to change without notice. Thermo Fisher Scientific makes no representations or warranties with respect to this manual. In no event shall Thermo be held liable for any damages, direct or incidental, arising out of or related to the use of this manual.

©2010 Thermo Fisher Scientific. All rights reserved.
Important operating and/or maintenance instructions. Read the accompanying text carefully.

Potential electrical hazards. Only qualified persons should perform procedures associated with this symbol.

Equipment being maintained or serviced must be turned off and locked off to prevent possible injury.

Hot surface(s) present which may cause burns to unprotected skin, or to materials which may be damaged by elevated temperatures.

Marking of electrical and electronic equipment, which applies to electrical and electronic equipment falling under the Directive 2002/96/EC (WEEE) and the equipment that has been put on the market after 13 August 2005.

This product is required to comply with the European Union's Waste Electrical & Electronic Equipment (WEEE) Directive 2002/96/EC. It is marked with the WEEE symbol. Thermo Fisher Scientific has contracted with one or more recycling/disposal companies in each EU Member State European Country, and this product should be disposed of or recycled through them. Further information on Thermo's compliance with this directive, the recyclers in your country and information on Thermo products will be available at www.thermofisher.com.

Always use the proper protective equipment (clothing, gloves, goggles, etc.)

Always dissipate extreme cold or heat and wear protective clothing.

Always follow good hygiene practices.

Each individual is responsible for his or her own safety.
Do You Need Information or Assistance on Thermo Scientific Products?

If you do, please contact us 8:00 a.m. to 6:00 p.m. (Eastern Time) at:

1-740-373-4763 Direct
1-800-438-4851 Toll Free, U.S. and Canada
1-877-213-8051 FAX
http://www.thermoscientific.com Internet Worldwide Web Home Page
service.led.marietta@thermofisher.com Service E-Mail Address

Our Sales Support staff can provide information on pricing and give you quotations. We can take your order and provide delivery information on major equipment items or make arrangements to have your local sales representative contact you. Our products are listed on the Internet and we can be contacted through our Internet home page.

Our Service Support staff can supply technical information about proper setup, operation or troubleshooting of your equipment. We can fill your needs for spare or replacement parts or provide you with on-site service. We can also provide you with a quotation on our Extended Warranty for your Thermo Scientific products.

Whatever Thermo Scientific products you need or use, we will be happy to discuss your applications. If you are experiencing technical problems, working together, we will help you locate the problem and, chances are, correct it yourself...over the telephone without a service call.

When more extensive service is necessary, we will assist you with direct factory trained technicians or a qualified service organization for on-the-spot repair. If your service need is covered by the warranty, we will arrange for the unit to be repaired at our expense and to your satisfaction.

Regardless of your needs, our professional telephone technicians are available to assist you Monday through Friday from 8:00 a.m. to 6:00 p.m. Eastern Time. Please contact us by telephone or fax. If you wish to write, our mailing address is:

Thermo Fisher Scientific
401 Millcreek Road, Box 649
Marietta, OH 45750

International customers, please contact your local Thermo Scientific distributor.
Table of Contents

<table>
<thead>
<tr>
<th>Section 1</th>
<th>Safety Information</th>
<th>1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2</td>
<td>Introduction ...</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Principles of Operation</td>
<td>2-1</td>
</tr>
<tr>
<td>Section 3</td>
<td>Installation ...</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Electrical Connections</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Plumbing Connections</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Choosing a Site ...</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Initial Start-Up</td>
<td>3-2</td>
</tr>
<tr>
<td>Section 4</td>
<td>Operation ...</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Start-Up ...</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Stopping ..</td>
<td>4-1</td>
</tr>
<tr>
<td>Section 5</td>
<td>Maintenance and Servicing</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>Disassembly for Cleaning</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>Cleaning Methods</td>
<td>5-2</td>
</tr>
<tr>
<td></td>
<td>Condenser Scale Test</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>Testing for Condenser Leaks</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>Heating Element Testing/Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td></td>
<td>Heating Element Testing/Replacement</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>Troubleshooting Guide</td>
<td>5-7</td>
</tr>
<tr>
<td>Section 6</td>
<td>Wiring Diagrams ...</td>
<td>6-1</td>
</tr>
<tr>
<td>Section 7</td>
<td>Replacement Parts Listing</td>
<td>7-1</td>
</tr>
<tr>
<td></td>
<td>Ordering Procedures</td>
<td>7-2</td>
</tr>
</tbody>
</table>
Section 1 Safety Information

Your Thermo Scientific Barnstead Electrically Heated Portable Still has been designed with function, reliability, and safety in mind. It is your responsibility to install it in conformance with local electrical codes. This manual contains important operating and safety information. The user must carefully read and understand the contents of this manual prior to the use of this equipment. For safe operation, pay attention to Notes, Cautions, and Warnings throughout the manual.

Important Information

Water purification technology employs one or more of the following: chemicals, electrical devices, mercury vapor lamps, steam and heated vessels. Care should be taken when installing, operating or servicing Thermo Scientific products. The specific safety notes pertinent to this Barnstead product follow.

Warnings

To avoid electrical shock, always:

1. Use a properly grounded electrical outlet of correct voltage and current handling capacity.

2. Ensure that the equipment is connected to electrical service according to local and national standards. Failure to properly connect may create a fire or shock hazard.

3. Do not mount this portable still directly over equipment that requires electrical service. Routine maintenance of this unit may involve water spillage and subsequent electrical shock hazard if improperly located.

4. Disconnect from the power supply prior to servicing.
To avoid personal injury:

1. Do not use in the presence of flammable or combustible materials; fire explosion may result. This device contains components which may ignite such materials.

2. Use this device with water feed only. Sanitizing/cleaning agents must be used in compliance with the instructions in this manual. Failure to comply could result in explosion and personal injury.

3. Wear eye and hand protection when using acid for cleaning, as spattering may occur.

4. Avoid splashing disinfecting solutions on clothing or skin.

5. Follow carefully the manufacturers' safety instructions on labels of chemical containers and Material Safety Data Sheets (M.S.D.S.).

6. Do not add the acid cleaning solution rapidly - if any bicarbonite scale is present, gas will be released in considerable amounts.

7. “Caution - Hot Surface. Avoid Contact.” The exterior of the still becomes hot during operation and will remain hot for some time after the still has been turned off.

8. Refer servicing to qualified personnel.
Section 2 Introduction

The Barnstead Electrically Heated Portable Still provides high quality distilled water at the rate of 1.8 liters/hour. The still is designed to use approximately 14.4 liters of cooling water and feed water combined for each 1.8 liters of distilled water produced. Two electrically powered, immersion-type heaters are used to give complete heat transfer and maximum heating efficiency. An automatic low water cut-off device is incorporated to protect the heaters against a low water condition.

Principles of Operation

The water to be purified enters the condenser at the water inlet. As the water flows around the outside of the condenser tube, it becomes preheated almost to boiling. The preheated water leaves the condenser through the discharge tube and is fed into the constant level device. The constant level device maintains a constant water level in the evaporator. The excess hot water (which may be used elsewhere as plain hot water) flows to drain. In the evaporator the water is converted into steam which passes up through the vapor pipe to the condenser tube where it is cooled to form distilled water.

By reducing the flow of water so that a little steam escapes through the condenser vent, high efficiency is assured, entrance of air becomes impossible, and any trace gases cannot redissolve in the hot distillate but leave with the wisp of steam. The vent also makes the system an open system so that no pressure can build up within the still.

The low water cutoff is designed to prevent damage caused by low water conditions in the evaporator. In use, the cutoff probe is in contact with the water in the still evaporator. The water completes an electrical circuit when the water is at a safe level (above the heating elements). When the water level drops below the probe, the circuit opens and de-energizes the heating elements.
Distillate capacity1.8 liters/hour (1/2 GPH)
Maximum water pressure90 psig
Minimum water pressure40 psig

Plumbing connections
- Water inlet1/4 NPT
- Waste1/2" hose

Electrical requirements
The still is rated at 1300 watts and operates on 120 volts AC. The still will draw 12 amperes of current at 120 volts.

Overall dimensions
- Width19-7/8 in.
- Depth9-1/2 in.
- Height20-1/2 in.
- Shipping weight65 lbs.

A hose nipple is provided for a 1/2" hose connection if a permanent connection is not desired.

Note A properly regulated water supply is important for optimum distillate quality and maximum distillate output. Ensure that your feedwater supply meets the requirements above.
Section 3 Installation

Unpack the still carefully to prevent damage. Ensure that all parts are removed from the container before discarding the packing materials.

Choosing a Site

Move the still evaporator to the operating location and install the evaporator so that it is level and plumb.

Warning Do not mount portable still directly over equipment requiring electrical service. Routine maintenance of this unit may involve water spillage and subsequent electrical shock hazard if improperly located.

Plumbing Connections

Note Ensure that the service piping is adequately supported. The still is not designed to support the service piping.

Connect the water and waste service lines to the still. Ensure that the waste service line at the still is atmospherically vented and gravity flow. A shut-off valve and throttling valve should be installed in the water supply line, just before the still, if the still is to be permanently piped. If the still is not to be permanently piped, a hose may be connected between the inlet hose nipple connection and a water faucet. The water faucet may be used as a water throttling valve. The distillate delivery tubing should be connected to the point of distribution or storage.

Electrical Connections

The still is connected electrically by connecting the cord to a dedicated 120 volt AC grounded electrical circuit. See the specifications plate on the still evaporator for the electrical requirements.

Warning Use a properly grounded electrical outlet of correct voltage and current handling capacity.

Ensure that the equipment is connected to electrical service according to local and national standards. Failure to properly connect may create a fire or shock hazard.

Note The still should be connected to a dedicated electrical line.
Initial Start-Up

Caution The heaters are immersion-type heaters, and will burn out if operated in air when the low water cutoff is disconnected. Read the Operation section before connecting the still to electrical service. Water supply must not be interrupted before power is turned off.

Note During the Initial Startup procedures, check all connections for leaks and tighten as required.

The first time that the still is started, or after cleaning, operate the still as follows:

1. Close the drain valve.
2. Open the water shut-off valve.
3. Open the water throttling valve about 1/2 turn.
4. When the water level in the evaporator reaches a sufficient level, as indicated by a steady overflow to waste, connect the still to the electrical service, and turn on power switch. Check to see that the heater light is on. (Heater light will only turn on when water is above low water cutoff probe.)
5. When the still begins to produce distilled water, adjust the water throttling valve until just a puff of steam issues from the condenser vent. Discard the first 2 hours of distillate production to allow the still to clean itself out.

Note Ideally, the temperature of the steam and gases escaping the vent should be 70°C or higher. To measure the vent temperature, use a thermocouple probe, such as the Thermo Scientific Thermolyne PM20700 Digital Pyrometer, inserted into the vent.
Section 4 Operation

Warning Do not use in the presence of flammable or combustible materials; fire or explosion may result. This device contains components which may ignite such materials.

This device is to be used with water feeds only. Sanitizing/cleaning agents must be used in compliance with instructions in this manual. Failure to comply could result in explosion and personal injury.

"**Caution-Hot Surface. Avoid Contact.**" The exterior of the still becomes hot during operation and will remain hot for some time after the still has been turned off.

Start-Up

Start the still as follows:

1. Close the drain valve.
2. Open the water shut-off valve.
3. Turn on main power switch. When water level is above low water cutoff probe, heaters will turn on.
4. Check the cooling water flow and the vent temperature.

Stopping

Stop the still as follows:

1. Turn main power switch off.
2. Close the water shut-off valve.
3. Open the drain valve to allow the still evaporator to drain completely while its contents are hot.

Note If the still is operated continuously, it should be stopped and drained once every four hours. Draining the still at frequent intervals will help to inhibit the formation of scale in the evaporator.

Do not change the setting of the water throttling valve.

Caution Always turn main power switch off before shutting off the water supply.
Warning To avoid electrical shock, always disconnect from power supply before maintenance and servicing.

Refer servicing to qualified personnel.

Carefully follow manufacturer’s safety instructions on labels of chemical containers and material safety data sheets.

Do not use in the presence of flammable or combustible materials; fire or explosion may result. This device contains components which may ignite such materials.

Disassembly for Cleaning

The frequency of cleaning will depend upon the purity of the water being used. The still should be inspected at frequent intervals until cleaning intervals are determined. Disassemble, inspect, and clean the still as follows:

1. Stop the still. Turn the still off and allow the still to cool.

2. Remove the condenser from the still. Inspect the cooling water side of the condenser for scale and clean as required.

3. Disassemble the evaporator until the interior of the evaporator is visible. Inspect the interior of the evaporator for scale. Remove as much scale as possible manually.

4. Disassemble the drain line and clean as required. Ensure that the drain line is clear (including the drain opening in the evaporator) before using a cleaner. Reassemble the drain line.

5. Soft scale may be removed as described under “Soft Scale Removal.” Silica scale may be removed as described under “Silica Scale Removal.” To remove hard scale or organic scale, fill the evaporator with acid cleaner (see “Hard Scale Removal”).

Warning Ventilate the room during this operation.

Warning Wear eye and hand protection when using acid for cleaning, as acid spattering may occur.
Disassembly for Cleaning (continued)

6. Inspect the constant level device and drain line and clean as required.

7. Reassemble the still. Assembly is essentially the reverse of disassembly.

8. Connect the water, waste and distillate lines.

9. Start the still as described under Initial Start-Up.

10. Lower the water flow rate with the water throttling valve until steam spouts out of the condenser vent at least 12 inches. Operate in this manner for 30 to 60 minutes to sterilize and clean out the still.

11. Readjust the still as described in Initial Start-Up.

Cleaning Methods

Cleaning requirements fall into two classes: scale removal and biological cleaning. Scale removal may be accomplished chemically or mechanically. Biological cleaning is accomplished with an isopropyl alcohol solution.

Caution When using the acid solution, do not allow the acid to remain in contact with the part for more than 20 minutes. Under no circumstances should any acid cleaner be allowed to come in contact with tinned surfaces (such as the distilled water side of the condenser or the distilled water transmission tubing).

Note For best results, heat acid solutions and detergent solutions.

Note If your still develops significant sludge and scale on an ongoing basis, you will probably benefit from pretreatment of your feedwater. Technical Services will help you ascertain the best pretreatment for your feedwater supply.

Warning Do not add isopropyl alcohol to boiler. A fire may result.

Warning Avoid splashing disinfecting solutions on clothing or skin.
The various methods of cleaning follow:

Soft Scale Removal Soft scale may be removed with a stiff bristle brush. After cleaning all scale particles should be flushed out with water.

Hard Scale Removal Hard scale can be removed by using a 10 percent solution of inhibited hydrochloric acid. This acid solution is available commercially or can be prepared using 20 parts water and 6 parts 30 percent hydrochloric acid. Flush the part thoroughly after using the acid solution. A 5 percent Sodium Bicarbonate Solution can be used to remove any acid left on the part.

If inhibited hydrochloric acid is not available, a ten percent solution of sulfamic or acetic acid may be used as a substitute. Exposure time to this acid is 2 to 3 hours. Sulfamic and acetic acids have an advantage over hydrochloric acid; they will not corrode the metal parts being cleaned.

Organic Scale and Sludge Removal If the scale has a dark brown or black color, it may be formed from organic impurities present in the feed water. This type of scale may be removed with a strong detergent solution. The detergent solution should be allowed to be in contact with the scale or sludge for 24 hours. Rinse off the parts with water after cleaning.

Silica Scale Removal Silica scale is usually clear and shiny and hard to detect visually. It is very hard and cannot be removed with an acid solution. Silica scale formation can be reduced by controlling the quality of the feed water by routing it through a mixed-bed deionizer less than 10 megohm/cm. It is best removed with a blunt instrument.

Biological Cleaning Biological cleaning is used on the parts that come in contact with the distillate (such as the distilled water side of the condenser or distilled water transmission tubing) to remove biological contamination from the affected part. Parts that come in contact with the steam vapors (such as distilled water transmission tubing) may be biologically cleaned by removing them from the still and immersing them in a one-percent solution by weight of isopropyl alcohol overnight. After the required amount of exposure to the isopropyl alcohol solution, reinstall the cleaned parts onto the still without rinsing them. Start the still and use the distillate output to rinse any remaining isopropyl alcohol solution to waste.
Testing for Condenser Leaks

Note The condenser cannot be repaired and must be replaced as a unit.

Visual Test for Leaks A simple test for condenser leaks may be performed as follows:

1. Disconnect the still from the electrical service.
2. Let the water flow through the condenser until the condenser is cold.
3. Note whether there is a flow, even in drop quantities, from the distillate outlet. If there is, it is possible that there is a leak from the cooling water side to the distillate side. If this is the case, the condenser must be replaced.

Pressure Test for Leaks If a more positive test is required, proceed as follows:

1. Remove the condenser from the still.
2. Remove the water discharge tubing. Plug the discharge connection on the condenser with a plug or stopper.
3. Attach a hose to the water inlet connection on the condenser and apply no more than 5-psi of air pressure to the condenser.
4. Submerge the entire condenser in a tank of water.
5. If any air bubbles come from the condenser, replacement is necessary.

Condenser Scale Test

Note When conducting the condenser scale test, ensure that a minimum inlet water pressure of 40 psi is maintained. A drop in water pressure will also cause steam to blow from the condenser because of inadequate cooling.

Test the condenser for scale as follows:

1. Adjust the water throttling valve until just a puff of steam issues from the condenser vent. The volume of water required to cool the condenser to this point gives a general indication of the amount of scale that has built up inside the condenser's cooling water tubing; the greater the scaling, the greater the volume of water required. In extreme cases of scale, steam will always blow from the condenser vent, even when the water throttling valve is completely open.

Warning Do not add the acid cleaning solution rapidly — if any bicarbonate scale is present, gas will be released in considerable amounts.
Condenser Scale Test (continued)

Caution Do not pour any acid solution into the distillant side of the condenser - the acid will destroy the tin coating.

2. Remove the condenser if the discharge pipe is cool enough to hold. Inspect the interior of the condenser for scale. If scale is present, pour the acid cleaning solution (see “Hard Scale Removal”) into the condenser as follows:

 - Connect funnel to top (Water outlet) of condenser. Connect tubing with clamp to bottom connection (water inlet) of condenser. Pour acid solution into funnel and let sit in condenser for 10-15 minutes. Open drain clamp and let acid solution flow to drain. Rinse condenser with distilled water after acid cleaning.

3. Reinstall the condenser on the still.

Heating Element Testing/Replacement

Warning To avoid electrical shock, always disconnect from power supply before maintenance and servicing. Refer servicing to qualified personnel.

Whenever a heating element is suspected of not operating properly, test and - if necessary - replace the heating element as follows:

1. Drain and cool the still.

2. Remove the bottom cover from the still evaporator. This may be done by removing the 2 screws from the bottom. Disconnect the electrical leads and bus bars from the heating element terminals. Tag the leads to facilitate reassembly.

3. To test each heating element for an open circuit, apply a current across the terminals. Use a test light in series with the applied current. If the test light does not light, the heating element is burned out. Mark the damaged heating elements.

4. To test each element for a short circuit, take an ohm reading on each element while bus bars are disconnected. The proper reading should be approximately 21 ohms.

5. Remove the evaporator cover from the still and inspect the heating elements from the inside of the evaporator. Warped or split elements should be replaced.
6. To remove an inoperative or damaged heater, loosen the screw under the heater and push out the heater. If the heater is badly scaled, remove the retaining nut and rock the heater back and forth (from inside the evaporator) to break the scale.

7. Install a new heater in place of the old heater. Tighten the screw only enough to hold the heater in place. This will allow you to rotate the heater when installing the bus bars.

8. Install the bus bars and wiring between heater terminals. Retighten the heater retaining screws to eliminate the possibility of leakage.

9. Add water to the evaporator and ensure that none of the heating elements are leaking. Allow to sit for 30 minutes. If no leaking occurs, reattach bottom cover to still.

10. Reassemble the still and connect the still to the electrical service.

Figure 5-1. Heating Element

Figure 5-2. Heating Element Replacement
<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Test and Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop in purity.</td>
<td>Dirty still.</td>
<td>Inspect evaporator for excess scale and clean as required.</td>
</tr>
<tr>
<td></td>
<td>Volatile impurities in feedwater.</td>
<td>Test distillate CO₂, NH₃, etc. Reduce water flow rate to help eliminate volatiles from condenser.</td>
</tr>
<tr>
<td>Pyrogenic or organic contamination or distillate.</td>
<td>Dirty still.</td>
<td>Inspect evaporator for excess scale and clean as required.</td>
</tr>
<tr>
<td></td>
<td>Leak in condenser.</td>
<td>Test condenser for leaks and replace if required.</td>
</tr>
<tr>
<td></td>
<td>Bacteriological growth in distilled water.</td>
<td>Inspect the suspected parts. Clean with an Isopropyl alcohol solution if required (see "Biological Cleaning" under Cleaning Methods)</td>
</tr>
<tr>
<td>Drop in distillate capacity</td>
<td>Excess scale on heating unit.</td>
<td>Inspect and clean as required.</td>
</tr>
<tr>
<td></td>
<td>Low voltage.</td>
<td>Check voltage. If less than 5% of the rated voltage, notify electrician.</td>
</tr>
<tr>
<td></td>
<td>Leak in drain valve.</td>
<td>Ensure drain valve is closed and not leaking.</td>
</tr>
<tr>
<td></td>
<td>Damaged or inoperative heaters.</td>
<td>Check wiring, connections, etc. Test heaters and replace if necessary.</td>
</tr>
<tr>
<td>Steam blowing from condenser.</td>
<td>Low water flowrate.</td>
<td>Readjust throttling valve.</td>
</tr>
<tr>
<td></td>
<td>Low water pressure.</td>
<td>Check water pressure. It should be at least 40 psi.</td>
</tr>
<tr>
<td></td>
<td>Excess scale in condenser.</td>
<td>Inspect condensor for scale.</td>
</tr>
<tr>
<td>Water blowing from condenser.</td>
<td>Condenser leak.</td>
<td>Test condenser for leaks; replace or repair as required.</td>
</tr>
<tr>
<td></td>
<td>Trapped distillate line.</td>
<td>Inspect distillate line for any restrictions or trapping.</td>
</tr>
</tbody>
</table>
Section 7 Replacement Parts Listing

Model Type: A1007
Product Name: Electrically Heated Portable Still (see Figure 5-2)
Series Number: 919

<table>
<thead>
<tr>
<th>Key</th>
<th>Part # (Qty)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21058</td>
<td>Condenser</td>
</tr>
<tr>
<td>2</td>
<td>21100</td>
<td>Distillate delivery tube</td>
</tr>
<tr>
<td>3</td>
<td>21880</td>
<td>Water discharge tube, 10-5/8”</td>
</tr>
<tr>
<td>4</td>
<td>03702</td>
<td>Water discharge elbow</td>
</tr>
<tr>
<td>5</td>
<td>21195</td>
<td>Steam cover</td>
</tr>
<tr>
<td>6</td>
<td>03719</td>
<td>Wiring nut, brass, #10-24 UNC</td>
</tr>
<tr>
<td>7</td>
<td>06271</td>
<td>Gasket, evaporator steam cover</td>
</tr>
<tr>
<td>8</td>
<td>CS670X1A</td>
<td>Evaporator</td>
</tr>
<tr>
<td>9</td>
<td>21319</td>
<td>Constant Level Device</td>
</tr>
<tr>
<td>10</td>
<td>02096</td>
<td>Drain faucet</td>
</tr>
<tr>
<td>11</td>
<td>07031*</td>
<td>Heating element</td>
</tr>
<tr>
<td>12</td>
<td>21414</td>
<td>Dish baffle</td>
</tr>
<tr>
<td>13</td>
<td>20251</td>
<td>Ring, stand base</td>
</tr>
<tr>
<td>14</td>
<td>21894</td>
<td>Bottom plate</td>
</tr>
<tr>
<td>15</td>
<td>CR919X1</td>
<td>Cord set, 120 volt</td>
</tr>
<tr>
<td>16</td>
<td>03775</td>
<td>Elbow, brass, 1/2 NPT x 1/4 NPT</td>
</tr>
<tr>
<td>17</td>
<td>FSX191</td>
<td>Screw, Phillips head, thread cutter, stainless steel, #8-32 x 3/8</td>
</tr>
<tr>
<td>18</td>
<td>03717</td>
<td>Hose nipple, brass, 1/2” x 1/4 NPT</td>
</tr>
<tr>
<td>19</td>
<td>SRX16</td>
<td>Strain relief, plastic</td>
</tr>
<tr>
<td>20</td>
<td>03411</td>
<td>Elbow, brass 3/8 NPT x 90°</td>
</tr>
<tr>
<td>21</td>
<td>03436BI</td>
<td>Nipple, brass, 3/8 NPT x 2”</td>
</tr>
<tr>
<td>22</td>
<td>03535</td>
<td>Nipple, close, brass, 3/8 NPT</td>
</tr>
<tr>
<td>23</td>
<td>SCX58</td>
<td>Triac</td>
</tr>
<tr>
<td>24</td>
<td>PC670X1A</td>
<td>Low Water Control Board</td>
</tr>
<tr>
<td>25</td>
<td>PLX97</td>
<td>Indicator Light</td>
</tr>
<tr>
<td>26</td>
<td>BR670X1A</td>
<td>Low Water Cut-off Probe Assembly</td>
</tr>
<tr>
<td>27</td>
<td>CA919X1A</td>
<td>Capacitor Assembly</td>
</tr>
<tr>
<td>28</td>
<td>SWX137</td>
<td>ON/OFF Switch</td>
</tr>
<tr>
<td>29</td>
<td>SWX129</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>30</td>
<td>CV919X2A</td>
<td>Electrical Box Cover</td>
</tr>
<tr>
<td>31</td>
<td>CV919X1A</td>
<td>Heat Sink</td>
</tr>
</tbody>
</table>
Ordering Procedures

Refer to the Specification Plate for the complete model number, serial number, and series number when requesting service, replacement parts or in any correspondence concerning this unit.

All parts listed herein may be ordered from the Thermo Scientific dealer from whom you purchased this unit or can be obtained promptly from the factory. When service or replacement parts are needed, check first with your dealer. If the dealer cannot process your request, then contact our Technical Services Department.

Prior to returning any materials, contact our Technical Services Department for a “Return Materials Authorization” number (RMA). Material returned without an RMA number will be refused.